Eco 2011/29 Department of Economics Does the Box-cox Transformation Help in Forecasting Macroeconomic Time Series?
نویسندگان
چکیده
The paper investigates whether transforming a time series leads to an improvement in forecasting accuracy. The class of transformations that is considered is the Box-Cox power transformation, which applies to series measured on a ratio scale. We propose a nonparametric approach for estimating the optimal transformation parameter based on the frequency domain estimation of the prediction error variance, and also conduct an extensive recursive forecast experiment on a large set of seasonal monthly macroeconomic time series related to industrial production and retail turnover. In about one fifth of the series considered the Box-Cox transformation produces forecasts significantly better than the untransformed data at one-step-ahead horizon; in most of the cases the logarithmic transformation is the relevant one. As the forecast horizon increases, the evidence in favour of a transformation becomes less strong. Typically, the näıve predictor that just reverses the transformation leads to a lower mean square error than the optimal predictor at short forecast leads. We also discuss whether the preliminary in-sample frequency domain assessment conducted provides a reliable guidance which series should be transformed for improving significantly the predictive performance.
منابع مشابه
Assessment of Trend and Seasonality in Road Accident Data: An Iranian Case Study
Background Road traffic accidents and their related deaths have become a major concern, particularly in developing countries. Iran has adopted a series of policies and interventions to control the high number of accidents occurring over the past few years. In this study we used a time series model to understand the trend of accidents, and ascertain the viability of applying ARIMA models on data...
متن کاملMachine learning algorithms for time series in financial markets
This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملRainfall-runoff process modeling using time series transfer function
Extended Abstract 1- Introduction Nowadays, forecasting and modeling the rainfall-runoff process is essential for planning and managing water resources. Rainfall-Runoff hydrologic models provide simplified characterizations of the real-world system. A wide range of rainfall-runoff models is currently used by researchers and experts. These models are mainly developed and applied for simulation...
متن کاملComparative Study Among Different Time Series Models for Monthly Rainfall Forecasting in Shiraz Synoptic Station, Iran
In this research, monthly rainfall of Shiraz synoptic station from March 1971 to February 2016 was studied using different time series models by ITSM Software. Results showed that the ARMA (1,12) model based on Hannan-Rissanen method was the best model which fitted to the data. Then, to assess the verification and accuracy of the model, the monthly rainfall for 60 months (from March 2011 to Feb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011